


LETTERS TO THE EDITOR

SYNTHESIS OF 2-(DIAZOMETHYL)-3-METHYL-5H-FURAN-4-ONE
FROM 1,5-BIS(DIAZO)-3-METHYLPENTANE-2,4-DIONE

L. A. Tolochko, A. M. Sipyagin, and V. G. Kartsev

UDC 547.722'235.42.07

In an investigation of acid reactions of bis(diazoacetyl)alkanes, we observed that unlike the known representatives of the $\text{N}_2\text{CHCO}(\text{CH}_2)_n\text{COCHN}_2$ series, where $n \neq 1$ [1], in the presence of acid agents (hydrogen chloride, acetic acid, and silica gel) diazo ketone I undergoes intramolecular cyclization at the oxygen atom of one of the diazocarbonyl groups with the formation of diazomethylfuranone II.

1,5-Bis(diazo)-3-methylpentane-2,4-dione (I) was obtained by the reaction of methylmalonic dichloride with diazomethane in 50% yield, mp 61–62°C (from an ether–hexane mixture). Proton NMR spectrum (CDCl_3), δ : 1.37 (3H, doublet, $j = 7$ Hz, CH_3), 3.37 (1H, quartet, $\text{CH}-\text{CH}_3$), 5.49 ppm (2H, singlet, CH_3), IR spectrum, 2090 ($\text{N}\equiv\text{N}$), 1600 cm^{-1} (C=O). UV spectrum (ethanol): λ_{max} 277 nm ($\log \epsilon 4.25$).

2-(Diazomethyl)-3-methyl-5H-furan-4-one (II) was obtained from diazo ketone I by passing I through a column with silica gel L40/100 μ in the benzene–ethyl acetate system. Melting point 90–91°C (with decomposition, from ether). Proton NMR spectrum (CDCl_3), δ : 1.62 (3H, singlet, CH_2), 4.51 (2H, singlet, CH_2), 5.08 ppm (1H, singlet, CH). IR spectrum (mineral oil), ν : 2080 ($\text{N}\equiv\text{N}$), 1650 cm^{-1} (C=O). UV spectrum (ethanol): λ_{max} 326 nm ($\log \epsilon 4.50$).

The data of elemental analysis of compounds I and II correspond to the calculated data.

LITERATURE CITED

1. E. Fahr, Ann. Chem., 638, 1 (1960).

Branch Institute of Chemical Physics, Academy of Sciences of the USSR, Chernogolovka 142432. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, p. 276, February, 1986. Original article submitted August 23, 1985.